Abstract

The multidrug resistant (MDR) opportunistic pathogen Klebsiella pneumoniae has previously been shown to adapt to chlorhexidine by increasing expression of the MFS efflux pump smvA. Here we show that loss of the regulator SmvR, through adaptation to chlorhexidine, results in increased resistance to a number of cationic biocides in K. pneumoniae and other members of the Enterobacteriaceae. Clinical Enterobacteriaceae isolates which lack smvA and smvR also have an increased susceptibility to chlorhexidine. When smvA from Salmonella and K. pneumoniae are expressed in Escherichia coli, which lacks a homologue to SmvAR, resistance to chlorhexidine increased (4-fold) but plasmid carriage of smvA alone was detrimental to the cell. Challenge of K. pneumoniae with chlorhexidine and another cationic biocide, octenidine, resulted in increased expression of smvA (approx. 70 fold). Adaptation to octenidine was achieved through mutating key residues in SmvA (A363V; Y391N) rather than abolishing the function of SmvR, as with chlorhexidine adaptation. Molecular modelling was able to predict that octenidine interacted more strongly with these mutated SmvA forms. These results show that SmvA is a major efflux pump for cationic biocides in several bacterial species and that increased efflux through SmvA can lead to increased chlorhexidine and octenidine tolerance.

Highlights

  • The bisbiguanide chlorhexidine is widely used in clinical environments for many applications such as in mouth washes and wound dressings

  • We explored the importance of SmvAR in other Enterobacteriaceae in providing increased tolerance to chlorhexidine

  • This study has shown that SmvA is an important efflux pump for chlorhexidine and other cationic biocides in K. pneumoniae and other members of the Enterobacteriaceae tested

Read more

Summary

Introduction

The bisbiguanide chlorhexidine is widely used in clinical environments for many applications such as in mouth washes and wound dressings. We have shown that increased tolerance of chlorhexidine in K. pneumoniae is associated with increased expression of the efflux pump smvA through deletions in the adjacent divergently-transcribed gene termed smvR11. Computer modelling was employed to predict that chlorhexidine is able to bind to SmvA and identified specific residues that are theorised to be involved in the interaction of SmvA with chlorhexidine. Overall this demonstrated a clear role of SmvAR in mediating increased resistance to a range of cationic antiseptics

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call