Abstract
Wound healing is a highly conserved process that restores the integrity and functionality of injured tissues. Transforming growth factor (TGF)-β is a master regulator of wound healing, whose signaling is attenuated by the E3 ubiquitin ligase Smurf2. Herein, the roles of Smurf2 in cutaneous wound healing were examined using a murine incisional cutaneous model. Loss of Smurf2 increased early inflammation in the wounds and led to narrower wounds with greater breaking strength. Loss of Smurf2 also led to more linearized collagen bundles in normal and wounded skin. Gene expression analyses by real-time quantitative PCR indicated that Smurf2-deficient fibroblasts had increased levels of TGF-β/Smad3 signaling and changes in expression profile of genes related to matrix turnover. The effect of Smurf2 loss on wound healing and collagen bundling was attenuated by the heterozygous loss of Smad3. Together, these results show that Smurf2 affects inflammation and collagen processing in cutaneous wounds by down-regulating TGF-β/Smad3 signaling.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.