Abstract

BackgroundEndometriosis is a widespread benign gynecological disorder. The signal transducer and activator of transcription 3 (STAT3) signaling pathway plays an important role in the pathogenesis of endometriosis through regulating proliferation and invasion of endometrial stromal cells. Furthermore, the protein tyrosine phosphatase (PTP), SH2 domain-containing phosphatase 1 (SHP-1), negatively regulates STAT3 activation. However, regulation of the SHP-1-STAT3 pathway in the pathogenesis of endometriosis remains unclear.MethodsCell proliferation and invasion were assessed by Cell Counting Kit-8 (CCK-8) assay and Transwell analysis, respectively, to investigate the role and regulation of the SHP-1-STAT3 pathway in the proliferation and invasion of endometrial stromal cells. Expression of Smad ubiquitin regulatory factor 1 (SMURF1), SHP-1, matrix metalloproteinase 2 (MMP2), MMP9, STAT3, and phospho-STAT3 (p-STAT3) level in patients with endometriosis were measured by Western blotting and/or immunohistochemical staining. The interaction between SMURF1 and SHP-1 was investigated by co-immunoprecipitation and ubiquitylation analysis.ResultsThe present study demonstrated that downregulation of SHP-1 expression in patients with endometriosis was negatively correlated with SMURF1 expression. SMURF1, an E3 ubiquitin ligase, activated the STAT3 pathway via ubiquitylation and degradation of SHP-1. Furthermore, SMURF1 promoted cell proliferation and invasion of endometrial stromal cells by activating STAT3 signaling and expression of its downstream targets, MMP2 and MMP9, whereas SHP-1 demonstrated an inverse effect. Additionally, SHP-1 inhibited SMURF1-mediated cell invasion and proliferation of endometrial stromal cells.ConclusionsOur findings indicate that SMURF1-mediated ubiquitylation of SHP-1 regulates endometrial stromal cell proliferation and invasion during endometriosis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.