Abstract

A common strategy for designing countermeasures against side channel attacks is using randomization techniques to remove the statistical dependency between sensitive data and side-channel emissions. However, this process is both labor intensive and error prone, and currently, there is a lack of automated tools to formally access how secure a countermeasure really is. We propose the first SMT solver based method for formally verifying the security of a countermeasures against such attacks. In addition to checking whether the sensitive data are masked, we also check whether they are perfectly masked, i.e., whether the joint distribution of any d intermediate computation results is independent of the secret key. We encode this verification problem into a series of quantifier-free first-order logic formulas, whose satisfiability can be decided by an off-the-shelf SMT solver. We have implemented the new method in a tool based on the LLVM compiler and the Yices SMT solver. Our experiments on recently proposed countermeasures show that the method is both effective and efficient for practical use.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.