Abstract
With the explosive growth of services, including Web services, cloud services, APIs and mashups, discovering the appropriate services for consumers is becoming an imperative issue. The traditional service discovery approaches mainly face two challenges: 1) the single source of description documents limits the effectiveness of discovery due to the insufficiency of semantic information; 2) more factors should be considered with the generally increasing functional and nonfunctional requirements of consumers. In this paper, we propose a novel framework, called SMS, for effectively discovering the appropriate services by incorporating social media information. Specifically, we present different methods to measure four social factors (semantic similarity, popularity, activity, decay factor) collected from Twitter. Latent Semantic Indexing (LSI) model is applied to mine semantic information of services from meta-data of Twitter Lists that contains them. In addition, we assume the target query-service matching function as a linear combination of multiple social factors and design a weight learning algorithm to learn an optimal combination of the measured social factors. Comprehensive experiments based on a real-world dataset crawled from Twitter demonstrate the effectiveness of the proposed framework SMS, through some compared approaches.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.