Abstract

A prerequisite for the successful retrieval of geophysical parameters from remote sensing measurements is the development of an accurate forward model. The European Space Agency Soil Moisture and Ocean Salinity (SMOS), carrying onboard an L-band interferometric radiometer (Microwave Interferometric Radiometer using Aperture Synthesis), was launched on November 2009. Due to the lack of L-band passive ocean measurements from space, several prelaunch forward models were developed and initially used in the SMOS ocean salinity operational processor. In this paper, an update of the prelaunch semi-empirical forward model is presented, using for the first time, real SMOS data. In particular, the ocean surface emissivity modulation at L-band due to rough sea surface is reviewed and reanalyzed. A new model definition is provided with the help of a simple neural network. The improvement is quantified in terms of retrieved salinity accuracy compared with the climatology and concerns essentially the range of wind speeds higher than 12 m·s <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">-1</sup> .

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.