Abstract

Theoretically and computationally, it is possible to demonstrate that the order of accuracy of a discontinuous Galerkin (DG) solution for linear hyperbolic equations can be improved from order k+1 to 2k+1 through the use of smoothness-increasing accuracy-conserving (SIAC) filtering. However, it is a computationally complex task to perform this in an efficient manner, which becomes an even greater issue considering nonquadrilateral mesh structures. In this paper, we present an extension of this SIAC filter to structured triangular meshes. The basic theoretical assumption in the previous implementations of the postprocessor limits the use to numerical solutions solved over a quadrilateral mesh. However, this assumption is restrictive, which in turn complicates the application of this postprocessing technique to general tessellations. Additionally, moving from quadrilateral meshes to triangulated ones introduces more complexity in the calculations as the number of integrations required increases. In this paper, we extend the current theoretical results to variable coefficient hyperbolic equations over structured triangular meshes and demonstrate the effectiveness of the application of this postprocessor to structured triangular meshes as well as exploring the effect of using inexact quadrature. We show that there is a direct theoretical extension to structured triangular meshes for hyperbolic equations with bounded variable coefficients. This is a challenging first step toward implementing SIAC filters for unstructured tessellations. We show that by using the usual B-spline implementation, we are able to improve on the order of accuracy as well as decrease the magnitude of the errors. These results are valid regardless of whether exact or inexact integration is used. The results here demonstrate that it is still possible, both theoretically and computationally, to improve to 2k+1 over the DG solution itself for structured triangular meshes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.