Abstract

Despite fMRI data being interpreted as time-varying graphs in graph analysis, there has been more emphasis on learning sophisticated node embeddings and complex graph structures rather than providing a macroscopic description of cortical dynamics. In this paper, I introduce the notion of smoothness harmonics to capture the slowly varying cortical dynamics in graph-based fMRI data in the form of spatiotemporal smoothness patterns. These smoothness harmonics are rooted in the eigendecomposition of graph Laplacians, which reveal how low-frequency-dominated fMRI signals propagate across the cortex and through time. We showcase their usage in a real fMRI dataset to differentiate the cortical dynamics of children and adults while also demonstrating their empirical merit over the static functional connectomes in inter-subject and between-group classification analyses.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.