Abstract

AbstractSeveral types of smoothing technique are considered which generate continuous approximation (i.e. nodal values) for vorticity and pressure from finite element solutions of the Navier–Stokes equations using quadrilateral elements. The simpler schemes are based on combinations of linear extrapolation and/or averaging algorithms which convert elementwise. Gauss point values to nodal point values. More complicated schemes, based on a global smoothing technique which employ the mass matrix (consistent or lumped), are also presented.An initial assessment of the accuracy of the several schemes is obtained by comparing the approximate vorticities with an analytical function. Next, qualitative vorticity comparisons are made from numerical solutions of the steady‐state driven cavity problem. Finally, applications of smoothing techniques to discontinuous pressure fields are demonstrated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.