Abstract

We consider initial-boundary problems for general linear first-order strictly hyperbolic systems with local or nonlocal nonlinear boundary conditions. While boundary data are supposed to be smooth, initial conditions can contain distributions of any order of singularity. It is known that such problems have a unique continuous solution if the initial data are continuous. In the case of strongly singular initial data we prove the existence of a (unique) delta wave solution. In both cases, we say that a solution is smoothing if it eventually becomes k-times continuously differentiable for each k. Our main result is a criterion allowing us to determine whether or not the solution is smoothing. In particular, we prove a rather general smoothingness result in the case of classical boundary conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.