Abstract

Summary We deal with smoothed estimators for conditional probability functions of discrete-valued time series {Yt} under two different settings. When the conditional distribution of Yt given its lagged values falls in a parametric family and depends on exogenous random variables, a smoothed maximum (partial) likelihood estimator for the unknown parameter is proposed. While there is no prior information on the distribution, various nonparametric estimation methods have been compared and the adjusted Nadaraya–Watson estimator stands out as it shares the advantages of both Nadaraya–Watson and local linear regression estimators. The asymptotic normality of the estimators proposed has been established in the manner of sparse asymptotics, which shows that the smoothed methods proposed outperform their conventional, unsmoothed, parametric counterparts under very mild conditions. Simulation results lend further support to this assertion. Finally, the new method is illustrated via a real data set concerning the relationship between the number of daily hospital admissions and the levels of pollutants in Hong Kong in 1994–1995. An ad hoc model selection procedure based on a local Akaike information criterion is proposed to select the significant pollutant indices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.