Abstract

The use of hierarchical Bayesian small area models, which take survey estimates along with auxiliary data as input to produce official statistics, has increased in recent years. Survey estimates for small domains are usually unreliable due to small sample sizes, and the corresponding sampling variances can also be imprecise and unreliable. This affects the performance of the model (i.e., the model will not produce an estimate or will produce a low-quality modeled estimate), which results in a reduced number of official statistics published by a government agency. To mitigate the unreliable sampling variances, these survey-estimated variances are typically modeled against the direct estimates wherever a relationship between the two is present. However, this is not always the case. This paper explores different alternatives to mitigate the unreliable (beyond some threshold) sampling variances. A Bayesian approach under the area-level model set-up and a distribution-free technique based on bootstrap sampling are proposed to update the survey data. An application to the county-level corn yield data from the County Agricultural Production Survey of the United States Department of Agriculture’s (USDA’s) National Agricultural Statistics Service (NASS) is used to illustrate the proposed approaches. The final county-level model-based estimates for small area domains, produced based on updated survey data from each method, are compared with county-level model-based estimates produced based on the original survey data and the official statistics published in 2016.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.