Abstract

Surface sensitive techniques, the field-modulated surface photovoltage, photoluminescence measurements, atomic force microscopy and scanning electron microscopy, were employed to yield detailed information on the influence of wet-chemical treatments on the preparation induced microroughness and electronic properties of wet-chemically passivated Si(111) substrates with special surface morphology. Stepped substrates with evenly distributed atomically flat terraces were prepared and passivated by thin oxide layers, which were used as a starting point for the subsequent H-termination after long storage in air. It was shown that their surface morphology and electronic properties do not degrade. Applying this preparation method to solar cell substrates with randomly distributed Si(111) pyramids, we achieved significantly lower densities of surface states and reduced recombination loss at a-Si:H/c-Si interfaces, compared with conventional pretreatments. The surface microroughness, the density of rechargeable states and the resulting recombination loss on a-Si:H/c-Si heterojunctions were found to be mainly influenced by two steps of surface pretreatment: firstly, the wet-chemical smoothing procedure of structured substrates and, secondly, the removal of native and wet-chemical oxides during the final etching in HF- or NH(4)F-containing solutions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.