Abstract

The evolution of the surface roughness W of a thin film deposited on a rough substrate is studied with a model of temperature-activated adatom diffusion, irreversible lateral aggregation, and no step energy barrier, in which the main parameter is the ratio R of diffusion and deposition rates. At sufficiently low temperatures (R≲10), the average number of adatom steps after adsorption is very small, thus W monotonically increases with time t due to an approximately uncorrelated deposition at short times. If the temperature is not very low (R∼10(3) or larger), smoothening occurs at short times and the Villain-Lai-Das Sarma (VLDS) growth equation governs the long time roughening, which is attained after a crossover time t(c) that increases with the correlation length ξ(i) of the substrate. Scaling arguments predict the dependence of t(c) on temperature and on the substrate production time and the scaling relation for the difference between the roughness of films deposited on rough and flat substrates, in good agreement with numerical results. The effect of temperature is not a direct extension of previous results on flat substrates because the short wavelength fluctuations delay the formation of terraces. For this reason, the effective energy obtained from the dependence of t(c) on R is 40% of the energy of activated adatom diffusion. A scaling law for the initial smoothening is proposed as W/W(i)=Ψ(t/t(c1)), with a crossover time t(c1)≡R(-θ)ξ(i)(z), where W(i) is the substrate roughness, θ≈0.4, and z is the VLDS dynamical exponent. It provides good data collapse if W is not very small and is suggested to be tested experimentally.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call