Abstract

A numerical method based on smoothed particle hydrodynamics with adaptive spatial resolution (SPH-ASR) was developed for simulating free surface flows. This method can reduce the computational demands while maintaining the numerical accuracy. In this method, the spatial resolution changes adaptively according to the distance to the free surface by numerical particle splitting and merging. The particles are split for refinement when they are near the free surface, while they are merged for coarsening when they are away from the free surface. A search algorithm was implemented for identifying the particles at the free surface. A particle shifting technique, considering variable smoothing length, was introduced to improve the particle distribution. The presented SPH-ASR method was validated by simulating various free surface flows, and the results were compared to those obtained using SPH with uniform spatial resolution (USR) and experimental data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.