Abstract

This work presents a two-dimensional (2D) model employing the mesh-free smoothed particle hydrodynamics (SPH) method for accurate characterization of microdevices. The simulator was validated by comparing analytical and numerical results from literature with the cases of Poiseuille, Couette, and biphase flow in microfluidic devices. Finally, a test case using two immiscible fluids in a cross-like device with three inputs and one output was computed. This device produces droplets in a flow-focusing configuration. The simulations produced similar flows when compared with theoretical, numerical, and experimental data reported in literature. When handling two liquid phases, such as water and oil, properties such as surface tension must be taken into account. These properties can be well modeled using the continuum surface force method, commonly applied for modeling capillarity in microdevice and microliquid applications. Thus, the implementation of the SPH method demonstrated that it represents a novel and promising alternative for simulation of emulsion formation in microfluidic devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.