Abstract

We propose a new three-dimensional smoothed particle hydrodynamics (SPH) non-Newtonian model to study coupled ice-sheet and ice-shelf dynamics. Most existing ice-sheet numerical models use grid-based Eulerian discretizations, and are usually restricted to shallow ice-sheet and ice-shelf approximations of the momentum- conservation equation. SPH, a fully Lagrangian particle method, solves the full momentum-conservation equation. Numerical accuracy of the proposed SPH model is first verified by simulating Poiseuille flow, a plane shear flow with a free surface and the propagation of a blob of ice along a horizontal surface. Next, the SPH model is used to investigate the grounding-line dynamics of a ice sheet/shelf. The steady position of the grounding line, obtained from our SPH simulations, is in good agreement with laboratory observations for a wide range of bedrock slopes, ice-to-fluid density ratios, and flux. We examine the effect of non-Newtonian behavior of ice on the grounding-line dynamics. The non-Newtonian constitutive model is based on Glen’s law for a creeping flow of a polycrystalline ice. Finally, we investigate the effect of a bedrock geometry on a steady-state position of the grounding line.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.