Abstract

A common kinetic feature for oxide reduction chemical/electrochemical processes is oxygen transport via a porous metallic layer, which has been considered as a rate-determining step for reducing uranium oxides to metallic uranium. Accounting this kinetic behavior must involve the resolution of the moving reactive interface between shrinking oxide and expanding metal phases. This study presents a numerical model using smoothed particles hydrodynamics (SPH) to effectively deal with the evolution of the shrinking core reaction interface and oxygen transport via mass transfer of lithium oxide (Li2O) species in multiple mass transfer domains. We successfully validated the proposed model against a theoretical derivation for the oxide reduction process handling a shrinking oxide core with molten salt and metal ash medium on a simple planar geometry. Armed with successful validation results, the model examined a realistic reactant geometry to extend the arguments beyond the one-dimensional analyses, allowing the proposed model to apply to general application scenarios with multi-dimensional geometry. This study demonstrated that the proposed model could simulate and evaluate an arbitrary reaction basket design without iterative experimental trials, which is prohibitive for a scaled high-temperature molten salt study in an inert environment. The construct potentially provides not only deep insights on multiphysics behaviors governing the process dynamics but also a robust framework for evaluating and screening candidate basket designs in the most cost-effective manner.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.