Abstract
We consider a modified version of the de Finetti model in insurance risk theory in which, when surpluses become negative the company has the possibility of borrowing, and thus continue its operation. For this model we examine the problem of estimating the “time-in-the red” over a finite horizon via simulation. We propose a smoothed estimator based on a conditioning argument which is very simple to implement as well as particularly efficient, especially when the claim distribution is heavy tailed. We establish unbiasedness for this estimator and show that its variance is lower than the naive estimator based on counts. Finally we present a number of simulation results showing that the smoothed estimator has variance which is often significantly lower than that of the naive Monte-Carlo estimator.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.