Abstract
We study the smoothed log-concave maximum likelihood estimator of a probability distribution on $\mathbb{R}^d$. This is a fully automatic nonparametric density estimator, obtained as a canonical smoothing of the log-concave maximum likelihood estimator. We demonstrate its attractive features both through an analysis of its theoretical properties and a simulation study. Moreover, we use our methodology to develop a new test of log-concavity, and show how the estimator can be used as an intermediate stage of more involved procedures, such as constructing a classifier or estimating a functional of the density. Here again, the use of these procedures can be justified both on theoretical grounds and through its finite sample performance, and we illustrate its use in a breast cancer diagnosis (classification) problem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.