Abstract

The principal components analysis of functional data is often enhanced by the use of smoothing. It is shown that an attractive method of incorporating smoothing is to replace the usual $L^2$-orthonormality constraint on the principal components by orthonormality with respect to an inner product that takes account of the roughness of the functions. The method is easily implemented in practice by making use of appropriate function transforms (Fourier transforms for periodic data) and standard principal components analysis programs. Several alternative possible interpretations of the smoothed principal components as obtained by the method are presented. Some theoretical properties of the method are discussed: the estimates are shown to be consistent under appropriate conditions, and asymptotic expansion techniques are used to investigate their bias and variance properties. These indicate that the form of smoothing proposed is advantageous under mild conditions, indeed milder than those for existing methods of smoothed functional principal components analysis. The choice of smoothing parameter by cross-validation is discussed. The methodology of the paper is illustrated by an application to a biomechanical data set obtained in the study of the behaviour of the human thumb-forefinger system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.