Abstract

Empirical applications of the Markov chain model and its spatial extensions suffer from issues induced by the sparse transition probability matrix, which usually results from adopting maximum likelihood estimators (MLEs). Two discrete kernel estimators with cross‐validated parameters are proposed for reducing the sparsity in the estimated transition probability matrix. Monte Carlo experiments suggest that these estimators are not only quite effective in producing a much less sparse matrix, alleviating issues related to sparsity, but also superior to MLEs in terms of lowering the mean squared error for individual and total transition probability, giving rise to the better recovery of the underlying dynamics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.