Abstract

Infinite variance processes have attracted growing interest in recent years due to its applications in many areas of statistics (see [1] and references therein). For example, ARIMA time-series models with infinite variance innovations are widely used in financial modelling. However, a little attention has been paid to incorporate infinite variance innovations for time-series models with random coefficients introduced by [2]. This paper considers the problem of nonparametric estimation for some time-series models using the smoothed least absolute deviation (SLAD) estimating function approach. We introduce a class of kernels in order to smooth the LAD estimators. It is also shown that this new SLAD estimators are superior than some existing ones.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.