Abstract

The surface finish is critical for applications such as optics, micro-fluid flow and mechanical assembly, in which optical lenses, fluidic channels and rotating components are all required to be smooth. However, the stair-stepping effect is well known in the layer-based additive manufacturing processes, in which a three-dimensional model is approximated by a set of two-dimensional layers. Consequently the fabricated surfaces have poor surface finishes especially those that are close to the horizontal plane. In this paper, a novel approach for achieving improved surface finish is presented for the mask-image-projection-based stereolithography (MIP-SL) process. Theoretical models and parameter characterization are presented for the developed methods. Accordingly, the process planning and calibration approaches for fabricating smooth up-facing surfaces in the MIP-SL process have been developed. Multiple test cases based on various types of curved surfaces have been performed. A comparison of the build results based on the traditional and the newly developed approaches illustrates the effectiveness of our method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.