Abstract
The surface finish is critical for applications such as optics, micro-fluid flow and mechanical assembly, in which optical lenses, fluidic channels and rotating components are all required to be smooth. However, the stair-stepping effect is well known in the layer-based additive manufacturing processes, in which a three-dimensional model is approximated by a set of two-dimensional layers. Consequently the fabricated surfaces have poor surface finishes especially those that are close to the horizontal plane. In this paper, a novel approach for achieving improved surface finish is presented for the mask-image-projection-based stereolithography (MIP-SL) process. Theoretical models and parameter characterization are presented for the developed methods. Accordingly, the process planning and calibration approaches for fabricating smooth up-facing surfaces in the MIP-SL process have been developed. Multiple test cases based on various types of curved surfaces have been performed. A comparison of the build results based on the traditional and the newly developed approaches illustrates the effectiveness of our method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.