Abstract
AbstractWe show that each of the topological 4-manifolds $\bcp^2\# k\overline{\bcp^2}$, for k = 5, 6, 7, 8 admits a smooth structure which has an Einstein metric of scalar curvature s > 0, a smooth structure which carries an Einstein metric with s < 0 and infinitely many non-diffeomorphic smooth structures which do not admit Einstein metrics. We also exhibit new examples of higher dimensional manifolds carrying Einstein metrics of both positive and negative scalar curvature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Mathematical Proceedings of the Cambridge Philosophical Society
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.