Abstract

We show for a certain class of operators $A$ and holomorphic functions $f$ that the functional calculus $A\mapsto f(A)$ is holomorphic. Using this result we are able to prove that fractional Laplacians $(1+\Delta^g)^p$ depend real analytically on the metric $g$ in suitable Sobolev topologies. As an application we obtain local well-posedness of the geodesic equation for fractional Sobolev metrics on the space of all Riemannian metrics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.