Abstract

Poly(ε-caprolactone) triacrylate (PCLTA) is attractive in tissue engineering because of its good biocompatibility and processability. The crosslinking time strongly influences PCLTAs cellular behaviors. To investigate these influences, PCLTAs with different molecular weights were crosslinked under UV light for times ranging from 1 to 20 min. The crosslinking efficiency of PCLTA increased with decreasing the molecular weight and increasing crosslinking time which could increase the gel fraction and network stiffness and decrease the swelling ratio. Then, the PCLTA networks crosslinked for different time were used as substrates for culturing rat aortic smooth muscle cells (SMCs). SMC attachment and proliferation all increased when the PCLTA molecular weight increased from 8k to 10k and then to 20k at the same crosslinking time. For the same PCLTA, SMC attachment, proliferation, and focal adhesions increased with increasing the crosslinking time, in particular, between the substrates crosslinked for less than 3 min and longer than 5 min. This work will provide a good experimental basis for the application of PCLTA.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.