Abstract

The basic or h1 calponin gene, which encodes an actin-binding protein involved in the regulation of smooth-muscle shortening velocity, is known to be a smooth-muscle differentiation-specific gene. It was found that basic calponin was expressed by cultured mesangial cells and localized along the actin filaments. Among the growth factors involved in the mesangial cell pathophysiology, including platelet-derived growth factor-BB (PDGF-BB), tumor necrosis factor-alpha (TNF-alpha), and transforming growth factor-beta1 (TGF-beta1), TNF-alpha potently downregulates basic calponin expression in both the mRNA and protein levels, whereas TGF-beta1 upregulates the calponin expression. PDGF-BB also reduced its mRNA expression. The half-life of basic calponin mRNA was determined to be similar between TNF-alpha-treated and -untreated mesangial cells, whereas cell transfection assays that used a luciferase reporter gene construct containing the functional basic calponin promoter showed that TNF-alpha and PDGF-BB reduced the transcriptional activity. Because stimulation with TNF-alpha and PDGF-BB was associated with mesangial cell proliferation, basic calponin may play a role in the suppression of mesangial cell proliferation. Treatment with anti-glomerular basement membrane antibody in calponin knockout mice induced more severe nephritis than in wild type mice, as judged from an increase in the urinary protein excretion, glomerular cellularity, and number of proliferating cell nuclear antigen-positive cells in glomerulus. These results suggest that basic calponin expression may serve as one of the intrinsic regulators of glomerular nephritis. Elucidation of the molecular mechanisms for regulation of the basic calponin expression in mesangial cells may improve the understanding of the molecular basis and pathogenesis of the glomerular response to injury.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.