Abstract

For a tissue-engineered coronary artery substitute to be a viable clinical option in the treatment of vascular diseases, it is necessary to use tissue-specific human cells. Coronary artery smooth muscle cells are the main resident cells in the tunica media of arteries. In this work, we examined the behavior and differentiation state of human coronary artery smooth muscle cells (HCASMCs) when cultured on 3D polyurethane scaffolds to fabricate hybrid vascular tissues. As the mechanical strength of the scaffold is an important element in engineered hybrid vascular substitutes, porous 3D polyurethane scaffolds fabricated using paraffin spheres and ammonium chloride particles were tested for their mechanical properties both in tension and in compression. The use of ammonium chloride particles as porogen generated scaffolds with superior mechanical properties, which are suitable for vascular tissue engineering. When seeded on uncoated, fibronectin-coated, and Matrigel-coated scaffolds, HCASMCs were well spread and started producing collagen as judged by histochemical analysis but appeared to lack elastin production. Fibronectin coating appeared to promote the infiltration of HCASMCs into the scaffold better than Matrigel coating but did not appear to affect the expression of collagen and elastin. Western blot analyses after successful cell recovery from the scaffolds indicated that HCASMCs, after culturing for 4 and 7 days, expressed similar amounts of smooth muscle alpha-actin and calponin regardless of extracellular matrix coating. Taken together, our data showed that the behavior and differentiation phenotype of HCASMCs can be analyzed after culture in 3D polyurethane scaffolds to establish appropriate conditions that will favor the fabrication of hybrid-engineered vascular substitutes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call