Abstract

This paper presents an algorithm for simultaneously fitting smoothly connected multiple surfaces from unorganized measured data. A hybrid mathematical model of B-spline surfaces and Catmull–Clark subdivision surfaces is introduced to represent objects with general quadrilateral topology. The interconnected multiple surfaces are G 2 continuous across all surface boundaries except at a finite number of extraordinary corner points where G 1 continuity is obtained. The algorithm is purely a linear least-squares fitting procedure without any constraint for maintaining the required geometric continuity. In case of general uniform knots for all surfaces, the final fitted multiple surfaces can also be exported as a set of Catmull–Clark subdivision surfaces with global C 2 continuity and local C 1 continuity at extraordinary corner points.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.