Abstract

Smooth metric measure spaces have been studied from the two different perspectives of Bakry–Émery and Chang–Gursky–Yang, both of which are closely related to work of Perelman on the Ricci flow. These perspectives include a generalization of the Ricci curvature and the associated quasi-Einstein metrics, which include Einstein metrics, conformally Einstein metrics, gradient Ricci solitons and static metrics. In this paper, we describe a natural perspective on smooth metric measure spaces from the point of view of conformal geometry and show how it unites these earlier perspectives within a unified framework. We offer many results and interpretations which illustrate the unifying nature of this perspective, including a natural variational characterization of quasi-Einstein metrics as well as some interesting families of examples of such metrics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.