Abstract
We propose an approach to use the state covariance of autonomous linear systems to track time-varying covariance matrices of nonstationary time series. Following concepts from the Riemannian geometry, we investigate three types of covariance paths obtained by using different quadratic regularizations of system matrices. The first quadratic form induces the geodesics based on the Hellinger-Bures metric related to optimal mass transport (OMT) theory and quantum mechanics. The second type of quadratic form leads to the geodesics based on the Fisher-Rao metric from information geometry. In the process, we introduce a weighted-OMT interpretation of the Fisher-Rao metric for multivariate Gaussian distributions. A main contribution of this work is the introduction of the third type of covariance paths, which are steered by system matrices with rotating eigenspaces. The three types of covariance paths are compared using two examples with synthetic data and real data from resting-state functional magnetic resonance imaging, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.