Abstract

Workbench-size particle accelerators, enabled by Nb3Sn-based superconducting radio-frequency (SRF) cavities, hold the potential of driving scientific discovery by offering a widely accessible and affordable source of high-energy electrons and x-rays. Thin-film Nb3Sn RF superconductors with high quality factors, high operation temperatures, and high-field potentials are critical for these devices. However, surface roughness, non-stoichiometry, and impurities in Nb3Sn deposited by conventional Sn-vapor diffusion prevent them from reaching their theoretical capabilities. Here we demonstrate a seed-free electrochemical synthesis that pushes the limit of chemical and physical properties in Nb3Sn. Utilization of electrochemical Sn pre-deposits reduces the roughness of converted Nb3Sn by five times compared to typical vapor-diffused Nb3Sn. Quantitative mappings using chemical and atomic probes confirm improved stoichiometry and minimized impurity concentrations in electrochemically synthesized Nb3Sn. We have successfully applied this Nb3Sn to the large-scale 1.3 GHz SRF cavity and demonstrated ultra-low BCS surface resistances at multiple operation temperatures, notably lower than vapor-diffused cavities. Our smooth, homogeneous, high-purity Nb3Sn provides the route toward high efficiency and high fields for SRF applications under helium-free cryogenic operations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call