Abstract

BackgroundLow resolution nuclear magnetic resonance (LR-NMR) is a common technique to identify the constituents of complex materials (such as food and biological samples). The output of LR-NMR experiments is a relaxation signal which can be modelled as a type of convolution of an unknown density of relaxation times with decaying exponential functions, plus random Gaussian noise. The challenge is to estimate that density, a severely ill-posed problem. A complication is that non-negativity constraints need to be imposed in order to obtain valid results. Significance and noveltyWe present a smooth deconvolution model for solution of the inverse estimation problem in LR-NMR relaxometry experiments. We model the logarithm of the relaxation time density as a smooth function using (adaptive) P-splines while matching the expected residual magnetisations with the observed ones. The roughness penalty removes the singularity of the deconvolution problem, and the estimated density is positive by design (since we model its logarithm). The model is non-linear, but it can be linearized easily. The penalty has to be tuned for each given sample. We describe an efficient EM-type algorithm to optimize the smoothing parameter(s). ResultsWe analyze a set of food samples (potato tubers). The relaxation spectra extracted using our method are similar to the ones described in the previous experiments but present sharper peaks. Using penalized signal regression we are able to accurately predict dry matter content of the samples using the estimated spectra as covariates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.