Abstract

Smooth muscle's stress equals that of skeletal muscle with less myosin. Thus, under isometric conditions, smooth muscle myosin may spend a greater fraction of its cycle time attached to actin in a high force state (i.e. higher duty cycle). If so, then smooth muscle myosin may also have a higher duty cycle under unloaded conditions. To test this, we used an in vitro motility assay in which fluorescently labeled actin filaments move freely over a sparsely coated (5-100 micrograms/ml) myosin surface. Actin filament velocity (V) was a function of the number of cross-bridges capable of interacting with an actin filament (N) and the duty cycle (f), V = (a x Vmax) x (1-(1-f)N) (Uyeda et al., 1990; Harada et al., 1990). N was estimated from the myosin density on the motility surface and the actin filament length. Data for V versus N were fit to the above equation to predict f. The duty cycle of smooth muscle myosin (4.0 +/- 0.7%) was not significantly different from that of skeletal muscle myosin (3.8 +/- 0.5%) in agreement with values estimated by Uyeda et al. (1990) for skeletal muscle myosin under unloaded conditions. The duty cycles of smooth and skeletal muscle myosin may still differ under isometric conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.