Abstract

In this paper, we consider the traveling wave solutions of the one-dimensional Serre-Green-Naghdi (SGN) equations which are proposed to model dispersive nonlinear long water waves in a one-layer flow over flat bottom. We decouple the traveling wave system of SGN equations into two ordinary differential equations. By studying the bifurcations and phase portraits of each bifurcation set of one equation, we obtain the exact traveling wave solutions of SGN equations for the variable $ u(x, t) $ which represents average horizontal velocity of water wave. For the compacted orbits intersecting with the singular line in phase plane, we obtained two families of solutions: a family of smooth traveling wave solutions including periodic wave solutions and solitary wave solutions, and a family of compacted singular solutions which have continuous first-order derivative but discontinuous second-order derivative.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.