Abstract
To clarify the relationship between DNA damage and free radical generation caused by smoking in vivo, DNA damage was investigated in the mouse lung by single-cell gel electrophoresis assay after exposure to cigarette smoke (CS) or gas phase cigarette smoke (GPCS). Although GPCS did not induce DNA lesions, bimodal peaks of DNA damage were detected in mouse lung exposed to CS, one immediately after exposure and another 15 min later. Pretreatment with a specific hydroxyl radical (•OH) scavenger completely prevented both types of DNA damage induced by CS. Electron spin resonance (ESR) study of the kinetics of free radical generation in CS or GPCS revealed that •OH could be detected immediately after the spin trapping of CS without chelators (first •OH generation), whereas •OH was also generated gradually with a time lag when the spin trapping was performed with chelators (second •OH generation). Our ESR study also indicated that the first •OH peak was probably generated from H(2)O(2) via a metal-independent pathway, whereas the second •OH peak might have been generated from H(2)O(2) and other sources via at least two different metal-masked pathways. The bimodal DNA damage induced in lung by smoking appears to be the result of a time lag between the first •OH generation and second •OH generation after exposure to the tar in CS.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.