Abstract

Long-lasting neuroadaptations in the glutamatergic corticostriatal circuitry have been suggested to be responsible for the persisting nature of drug addiction. In particular, animal models have linked the metabotropic glutamate receptor 5 (mGluR5) to drug-seeking behavior and extinction learning. Accordingly, blocking mGluR5s attenuated self-administration of cocaine and other addictive drugs in rats. How these animal findings extend to humans remains unclear. Therefore, we investigated if human cocaine users (CU) exhibit altered mGluR5 availability compared with drug-naïve control subjects. Seventeen male controls (11 smokers) and 18 male cocaine users (13 smokers) underwent positron emission tomography with (11)C-ABP688 to quantify mGluR5 availability in 12 volumes of interest in addiction-related brain areas. Drug use was assessed by self-report and quantitative hair toxicology. CU and controls did not significantly differ in regional mGluR5 availability. In contrast, smokers (n=24) showed significantly lower mGluR5 density throughout the brain (mean 20%) compared with non-smokers (n=11). In terms of effect sizes, lower mGluR5 availability was most pronounced in the caudate nucleus (d=1.50, 21%), insula (d=1.47, 20%), and putamen (d=1.46, 18%). Duration of smoking abstinence was positively associated with mGluR5 density in all brain regions of interest, indicating that lower mGluR5 availability was particularly pronounced in individuals who had smoked very recently. Specifically tobacco smoking was associated with lower mGluR5 availability in both CU and controls, while cocaine use was not linked to detectable mGluR5 alterations. These findings have important implications regarding the development of novel pharmacotherapies aimed at facilitating smoking cessation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call