Abstract
In recent years, forest fires have been occurring frequently around the globe, affected by extreme weather and dry climate, causing serious economic losses and environmental pollution. In this context, timely detection of forest fire smoke is crucial for realizing real-time early warning of fires. However, fire and smoke from forest fires can spread to cover large areas and may affect distant areas. In this paper, a lightweight joint forest fire and smoke detection network, SmokeFireNet, is proposed, which employs ShuffleNetV2 as the backbone for efficient feature extraction, effectively addressing the computational efficiency challenges of traditional methods. To integrate multi-scale information and enhance the semantic feature extraction capability, a feature pyramid network (FPN) and path aggregation network (PAN) are introduced in this paper. In addition, the FPN network is optimized by a lightweight DySample upsampling operator. The model also incorporates efficient channel attention (ECA), which can pay more attention to the detection of forest fires and smoke regions while suppressing irrelevant features. Finally, by embedding the receptive field block (RFB), the model further improves its ability to understand contextual information and capture detailed features of fire and smoke, thus improving the overall detection accuracy. The experimental results show that SmokeFireNet is better than other mainstream target detection algorithms in terms of average APall of 86.2%, FPS of 114, and GFLOPs of 8.4, and provides effective technical support for forest fire prevention work in terms of average precision, frame rate, and computational complexity. In the future, the SmokeFireNet model is expected to play a greater role in the field of forest fire prevention and make a greater contribution to the protection of forest resources and the ecological environment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.