Abstract
In high-rise fires, smoke is often the leading cause of fatalities. Therefore, in the event of a fire, the ability to predict the movement of smoke throughout a tall structure is of vital importance. Smoke moves depending on a number of interacting and complex factors including weather conditions, building construction, operation of HVAC equipment, as well as the location and intensity of the fire. Smoke often travels long distances from the fire floor, and in the particular case of a high-rise fire, smoke frequently moves to upper floors via open passages such as elevator shafts and stairwells. A network model is described that is capable of accounting for all of the complex interactions among the variables that affect the movement of smoke via an elevator shaft and ultimately into occupied floors within the structure. The program is used to identify and assess the important factors that strongly influence the movement of smoke during a structural fire. The results are used to recommend construction practices and the operation of floor pressurization equipment that will diminish the volume of smoke delivered to upper floors in a high-rise building.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.