Abstract

Smilax china L. is an important herb used in traditional Chinese medicine. In this study, the mechanism of Smilax china L. polyphenols (SCP) on insulin resistance and anti-obesity in mice induced by a high-fat diet (HFD) was investigated. Fifty female mice were randomly divided into five groups: control, HFD and low, medium, and high doses of SCP for 70 d. SCP significantly decreased intraperitoneal adipose tissue index, body weight gain, liver lipids, and serum inflammatory factor levels. Blood glucose and insulin concentrations, as well as insulin resistance index in SCP, were significantly lower than those in HFD. In addition, SCP markedly up-regulated the gene expression of glucose transporter 4 (GLUT4), insulin receptor substrate 1 (IRS1), insulin receptor substrate 2 (IRS2), serine-threonine kinase (AKT), Acyl-CoA oxidase (ACO), and protein kinase A (PKA), and down-regulated the expression of mammalian target of rapamycin complex 1 (mTORC1), sterol-responsive element-binding protein-1c (SREBP1c), fatty acid synthase (FAS), 3-hydroxy-3-methyl glutaryl coenzyme A reductase (HMGCR), and forkhead box protein O1 (FOXO1). SCP significantly increased the protein expression of AKT, GLUT4, AMP-activated protein kinase (AMPK), phosphorylated-AMPK (p-AMPK), phosphorylated-AKT (p-AKT), and uncoupling protein 1 (UCP-1), and decreased the expression of SREBP1c, FAS, HMGCR, phosphorylation of IKBα (p-IKBα), and nuclear factor kappa B subunit p65 (P65) in the liver. Overall, SCP effectively reduced HFD-induced insulin resistance and obesity in mice, partly through NF-κB and IRS/AKT-AMPK signaling pathways to regulate inflammatory factors. Therefore, SCP may improve lifestyle diseases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call