Abstract

Accurately identifying potential drug-target interactions (DTIs) is a critical step in accelerating drug discovery. Despite many studies that have been conducted over the past decades, detecting DTIs remains a highly challenging and complicated process. Therefore, we propose a novel method called SMGCN, which combines multiple similarity and multiple kernel fusion based on Graph Convolutional Network (GCN) to predict DTIs. In order to capture the features of the network structure and fully explore direct or indirect relationships between nodes, we propose the method of multiple similarity, which combines similarity fusion matrices with Random Walk with Restart (RWR) and cosine similarity. Then, we use GCN to extract multi-layer low-dimensional embedding features. Unlike traditional GCN methods, we incorporate Multiple Kernel Learning (MKL). Finally, we use the Dual Laplace Regularized Least Squares method to predict novel DTIs through combinatorial kernels in drug and target spaces. We conduct experiments on a golden standard dataset, and demonstrate the effectiveness of our proposed model in predicting DTIs through showing significant improvements in Area Under the Curve (AUC) and Area Under the Precision-Recall Curve (AUPR). In addition, our model can also discover some new DTIs, which can be verified by the KEGG BRITE Database and relevant literature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.