Abstract

Frequency, tie-line power, and the terminal voltages of synchronized generators must all be kept within prescribed limits to ensure the stability of an interconnected power grid through combined automatic generation control (AGC) and automatic voltage regulator (AVR) loops. Thermal power plants, electric vehicles, and renewable energy sources—including solar and wind, geothermal, and solar thermal power plants—form the two-area integrated power system in present research. A new cascade controller named the cascaded proportional integral derivative (PID) and fractional-order PID (CPID-FOPID) controller is proposed for the first time, whose performance is compared with the PID and FOPID controller. The results show that the proposed cascade controller outperforms PID and FOPID in delivering superior dynamic characteristics, including short settling times and low oscillation amplitudes. A new metaheuristic algorithm named the coot algorithm was applied to optimize the parameters of these controllers. The suggested controller outperforms FOPID in the combined AGC and AVR problem under uncertain conditions (random load disturbance, variable input of solar irradiation, and wind power). Robustness of the controller is tested with significant variation in the turbine time constant of the thermal and geothermal power plant. In this study, authors also investigated the best possible coordination between the superconducting magnetic energy storage (SMES) and gate-controlled series capacitor (GCSC) devices to control both voltage and frequency simultaneously. The effect of communication time to the power system is analyzed in this study. Additionally, the obtained results are satisfactorily validated using OPAL-RT real-time digital simulator.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call