Abstract

Group-living animals frequently have to trade off the costs and benefits of leaving an established group and joining another group. Owing to their high fitness relevance, group-joining decisions are commonly nonrandom and may be based on traits of both individual members and the group such as life stage, body size, social status and group density or size, respectively. Many group-living animals are able to recognize and to associate preferentially with familiar individuals, i.e. those encountered before. Hence, after dispersing from established groups, animals commonly have to decide whether to join a new familiar or unfamiliar group. Using binary choice situations we assessed the effects of social familiarity on group-joining behaviour of the plant-inhabiting predatory mite Phytoseiulus persimilis. Group living in P. persimilis is brought about by the patchy distribution of its spider mite prey and mutual conspecific attraction. In the first experiment, gravid predator females given a choice between spider mite patches occupied by unfamiliar and familiar groups of females strongly preferred to join familiar groups and to deposit their eggs in these patches. Preference for socially familiar groups was robust across biases of spider mite prey densities between choice options. The second experiment revealed that the predatory mite females can smell social familiarity from a distance. Females subjected to odour choice situations in artificial cages were more strongly attracted to the odour of familiar than unfamiliar groups. We argue that P. persimilis females preferentially join socially familiar groups because a familiar social environment relaxes competition and optimizes foraging and reproduction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call