Abstract

Prolonged exposure to inorganic arsenic (As) via drinking water is a major concern as it poses significant human health risks. Removal of As is crucial but requires effective and environment-friendly clean-up technology to avoid any additional risk to the environment. In this study, we developed Australian smectite (smec)-supported nano zero-valent iron (nZVI) composite for arsenate i.e., As(V) sorption. We used a range of tools, including X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) and energy dispersion X-ray (EDS) spectroscopy to characterise the material. SEM and TEM images and elemental mapping of the composite reflect that the smectite layer was surrounded by a chain of iron nanobeads evenly distributed on clay particles, which is quite exceptional among currently available nZVIs. The maximum As(V) sorption capacity of this composite was 23.12 mg/g in the ambient conditions. Using X-ray photoelectron spectroscopy we unveiled chemical states of As and Fe before and after the sorption process. Additionally, the release of iron nanoparticles from the composite at various pHs (3−10) were found negligible, which demonstrates the effectiveness of smec-nZVI to remove As(V) from contaminated water without posing any secondary pollutant.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.