Abstract

Epigenetic complexes regulate chromatin dynamics via binding to and assembling on chromatin. However, the mechanisms of chromatin binding and assembly of epigenetic complexes within cells remain incompletely understood, partly due to technical challenges. Here, we present a new approach termed single-molecule chromatin immunoprecipitation imaging (Sm-ChIPi) that enables to assess the cellular assembly stoichiometry of epigenetic complexes on chromatin. Sm-ChIPi was developed based on chromatin immunoprecipitation followed by single-molecule fluorescence microscopy imaging. In this method, an epigenetic complex subunit fused with a gene coding for a fluorescent protein is stably expressed in its corresponding knockout cells. Nucleosomes associated with epigenetic complexes are isolated from cells at native conditions and incubated with biotinylated antibodies. The resulting complexes are immobilized on a quartz slide that had been passivated and functionalized with NeutrAvidin. Image stacks are then acquired by using single-molecule TIRF microscopy. The individual spots imaged by TIRF microscopy represent single protein-nucleosome complexes. The number of copies of the protein complexes on a nucleosome is inferred from the fluorescence photobleaching measurements. Sm-ChIPi is a sensitive and direct method that can quantify the cellular assembly stoichiometry of epigenetic complexes on chromatin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.