Abstract

Important workloads, such as machine learning and graph analytics applications, heavily involve sparse linear algebra operations. These operations use sparse matrix compression as an effective means to avoid storing zeros and performing unnecessary computation on zero elements. However, compression techniques like Compressed Sparse Row (CSR) that are widely used today introduce significant instruction overhead and expensive pointer-chasing operations to discover the positions of the non-zero elements. In this paper, we identify the discovery of the positions (i.e., indexing) of non-zero elements as a key bottleneck in sparse matrix-based workloads, which greatly reduces the benefits of compression.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.