Abstract

We report a handheld, smartphone-based spatial frequency domain imaging device. We first examined the linear dynamic range of the smartphone camera sensor. We then calculated optical properties for a series of liquid phantoms with varying concentrations of nigrosin ink and Intralipid, demonstrating separation of absorption and scattering. The device was then tested on a human wrist, where optical properties and hemoglobin-based chromophores were calculated. Finally, we performed an arterial occlusion on a human hand and captured hemodynamics using our device. We hope to lay the foundation for an accessible SFDI device with mass-market appeal designed for dermatological and cosmetic applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.