Abstract

Simple and sensitive detection of cardiac biomarkers is of great significance for early diagnosis and prevention of acute myocardial infarction (AMI). Here, a ratiometric fluorescent nanohybrids probe (AuNCs-QDs) was synthesized through the coupling of bovine serum albumin-functionalized gold nanoclusters (AuNCs) with CdSe/ZnS quantum dots (QDs) to realize simple and sensitive detection of cardiac biomarker myoglobin (Mb). The AuNCs-QDs probe shows pink fluorescence under UV light, with two emission peaks at 468nm and 630nm belonging to QDs and AuNCs, respectively. Importantly, the presence of Mb caused fluorescence quenching of the blue-emitting QDs, thereby inhibiting the fluorescence resonance energy transfer (FRET) process between QDs and AuNCs, and reducing the fluorescence intensity ratio (F468/F630) of AuNCs-QDs probe effectively. As the concentration of Mb increases, the ratiometric fluorescent probe also exhibits a visible fluorescence color change. The detection limit was as low as 4.99μg/mL, and the response of the probe to Mb showed a good linear relationship up to 0.52mg/mL. Moreover, the probe has excellent specificity for Mb. Besides, the AuNCs-QDs has been applied to detect Mb of urine samples. More importantly, we also developed an AuNCs-QDs probe modified smartphone-aided paper-based strip for on-site monitoring of Mb. As far as we know, this is the first report of a smartphone-aided paper-based strip for on-site quick monitoring of Mb, which provides a useful approach for AMI biomarker monitoring and may can be extended to other medical diagnostics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.