Abstract

In this advanced age, when smart phones are the norm, people utilize social networking, online shopping, and even private information storage through smart phones. As a result, identity authentication has become the most critical security activity in this period of the intelligent craze. By analyzing the shortcomings of the existing authentication methods, this paper proposes an identity authentication method based on the behavior of smartphone users. Firstly, the sensor data and touch-screen data of the smart phone users are collected through android programming. Secondly, the eigenvalues of this data are extracted and sent to the server. Thirdly, the Support Vector Machine (SVM) and Recurrent Neural Network (RNN) are introduced to train the collected data on the server end, and the results are finally yielded by the weighted average. The results show that the method this paper proposes has great FRR (False Reject Rate) and FAR (False Accept Rate).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.